

45779 D /Revised: November 2022

MANNITOL INJECTION. USP

Gastrointestinal: dryness of mouth, nausea, vomiting, diarrhea. Genitourinary: osmotic nephrosis, urinary

retention. Central Nervous System: headache, convul-

sions, dizziness

Special Senses: Blurred vision, rhinitis.

Cardiovascular: pulmonary edema, edema, hypotension, hypertension, tachycardia, angina-like chest pains. Dermatologic: skin necrosis, thrombophlebitis.

Hypersensitivity: urticaria.

Miscellaneous: thirst, arm pain, chills, fever.

DOSAGE AND ADMINISTRATION:

DOSAGE AND ADMINISTRATION: For Intravenous Injection General Recommendations—Give mannitol injection only intravenously. The total dosage, concentration and rate of administration should be governed by the nature and severity of the condition being treated, fluid requirement and urinary output. Usual adult dosage ranges from 50 to 200 g in 24 hours but in most instances an adequate response will be achieved at a dosage of approximately 100 g in 24 hours. The rate is usually adjusted to maintain an adequate urine flow (at least 30 to 50 mL/hr). Test Dose-In marked oliguria or inadequate renal function a test dose of mannitol should renal function a test dose of mannitor should be given. The test dose may be approximately 0.2 g/kg (about 50 mL of a 25% solution) infused in three to five minutes to produce an adequate urine flow (at least 30 to 50 mL/hr). If urine flow does not increase within two or three hours a second test dose may be given. If there is an inadequate response the patient should be reevaluated.

should be reevaluated.

Prevention of Acute Renal Failure (Oliguria)
—When used during surgery, immediately
postoperatively or following trauma, 50 to
100 g of mannitol as a 5 to 25% solution may
be given. The concentration and amount will
depend upon the fluid requirements of the
patient. Following suspected or actual hemolytic transfusion reactions 20 g of mannitol may
be given intravenously over a five minute period
to provoke diuresis. If diuresis does not occur
the 20 g dose may be repeated. If there is an
adequate urine flow (30 to 50 mL/hr) then intravenous fluids containing not more than 50 to
75 mEq of sodium per liter should be given in
sufficient volume to match the desired urine
flow (100 mL/hr) until fluids can be taken orally.

Treatment of Oliguria—The usual dose for

Treatment of Oliguria-The usual dose for treatment of oliguria is 50 to 100 g as a 15 to 25% solution Reduction of Intracranial Pressure, Cerebral Edema or Intraocular Pressure—A 25% solution of mannitol is recommended since its effective-

of mannitol is recommended since its effective-ness depends on establishing intravascular hyperosmolarity. When used before or after surgery, a total dose of 1.5 to 2 g/kg can be given over a period of 30 to 60 minutes. Careful evaluation must be made of the circulatory and renal reserve prior to and during use of mannitol at this relatively high dose and rapid infusion rate. Careful attention must be paid to fluid and electrolyte balance, body weight, and total input and output before and after infusion of mannitols. Evidence of reduced cerebral spinal fluid pressure may be observed within 15 minutes after starting infusion.

Maximal reduction of intraocular pressure occurs 30 to 60 minutes after injection.

Urinary Excretion of Toxic Substances—Mannitol in 5 to 25% solutions is used as an infusion as long as indicated if the level of urinary output remains high. The concentration will depend upon the fluid requirement and urinary output. Intravenous water and electrolytes must be given to replace the loss of these substances in the urine, sweat and expired air. If benefits are not observed after 200 g of mannitol are given discontinue if 200 g of mannitol are given, discontinue it. PREPARATION OF DILUTIONS FOR INTRAVENOUS INJECTION Concentration How Prepared Test dose Use as supplied (25%)

50 ml of mannitol of 5% Dextrose Injection or in a clinically appropriate electrolyte solution

5% 10%

50 mL of mannitol plus 200 mL 50 mL of mannitol plus 75 mL 50 mL of mannitol plus 33.3 mL 50 mL of mannitol plus 12.5 mL Use as supplied 15% 20% 25% For Urologic Irrigation .5% solution is used. The use of 2.5% mannitol solution minimizes the hemolytic effect of water alone, the entrance of hemolyzed blood into the

NDC 63323-024-01 50 mL Single Dose Flip-off Top Vial

circulation, and the resulting hemoglobinemia which is considered a major factor in producing serious renal complications.

PREPARATION OF DILUTIONS FOR UROLOGIC IRRIGATION **How Prepared** Concentration Add contents of two 50 mL vials (25% mannitol) to 900 mL Sterile Water for Injection. 2.5%

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit. **HOW SUPPLIED:** Mannitol Injection, USP, 25%

250 mg per mL

Jnit of Sale 1550 NDC 63323-024-25 Unit of 25

Use only if solution is clear and seal intact and undamaged.

Store at 20° to 25°C (68° to 77°F) [see U Controlled Room Temperature].	S
Preservative Free. Discard unused portion	١.

For Intravenous Use and

25%

Urologic Irrigation DESCRIPTION:

Mannitol is a 6-carbon sugar alcohol and has the following structure:

182.17

Mannitol occurs naturally in fruits and vegetables, and is metabolically inert in humans.

Mannitol Injection, USP, 25%, an osmotic diuretic, is a sterile, nonpyrogenic solution of mannitol in Water for Injection. It is a supersaturated solution at room temperature.

Each mL contains: Mannitol 250 mg; Water for Injection as The semaler concentration

for Injection q.s. The osmolar concentration is 1372 mOsmol/L (calc.). It contains no antimicrobial agents. The pH of a 5% solution is between 4.5 and 7.0. **CLINICAL PHARMACOLOGY:**

Mannitol is an osmotic diuretic. After intravenous injection it is confined to the extracel-

mainton is an osmolic durietic. After Intravenous injection it is confined to the extracellular space, metabolized only slightly and excreted rapidly by the kidneys. Approximately 80% of a 100 g dose appears in the urine in three hours. Mannitol is freely filtered by the glomeruli with less than 10% tubular reabsorption. It is not secreted by tubular cells. It induces diuresis by elevating the osmolarity of the glomerular filtrate and thereby hinders tubular reabsorption of water. Urinary output of water and excretion of sodium and chloride are enhanced. Mannitol is poorly absorbed from the gastrointestinal tract.

Mannitol injection is free of electrolytes and is used in urology as a nonhemolytic irrigant. The amount of mannitol absorbed intravascularly during transurethral prostatic surgery is variable and depends primarily on the extent of the surgery. Such mannitol is excreted by the kidneys and produces osmotic diuresis.

INDICATIONS AND USAGE:

INDICATIONS AND USAGE:

Mannitol Injection Mannitol Injection, USP is indicated for the following therapeutic uses:

The promotion of diuresis, in the prevention and/or treatment of the oliguric phase of acute renal failure before irreversible renal failure hear graphiched.

failure becomes established.
The reduction of intracranial pressure and treatment of cerebral edema by reducing brain mass

orian mass.

The reduction of elevated intraocular pressure when it cannot be lowered by other means.

The promotion of urinary excretion of toxic substances.

For Urologic Irrigation
Mannitol solution, 2.5% is indicated as an irrigation solution in transurethral prostatic resection or other transurethral surgical procedures. CONTRAINDICATIONS:
• Well established anuria due to severe renal

disease.

olsease.

Severe pulmonary congestion or frank pulmonary edema.

Active intracranial bleeding except during craniotomy.

Severe dehydration.

Progressive renal damage or dysfunction after institution of mannitol therapy, including increasing oliguria and azotemia. Progressive heart failure or pulmonary congestion after mannitol therapy is started.

WARNINGS: In severe impairment of renal function

test dose should be given (see **DOSAGE AND ADMINISTRATION**). A second test dose may be given if there is an inadequate response. No more than two test doses should be attempted.

Excessive loss of water and electrolytes may lead to serious imbalances. Serum sodium

lead to serious impalances. Serum sodium and potassium should be carefully monitored during mannitol therapy.

The diuresis after rapid infusion of mannitol may increase preexisting hemoconcentration. With continued use of mannitol a loss of water in excess of electrolytes can cause hypernatremia hypernatremia.
Shift of sodium-free intracellular fluid into

the extracellular compartment after mannitol infusion may lower serum sodium concentration and aggravate preexisting hyponatremia. Closely monitor the urine output and discontinue mannitol infusion promptly if output is low. Inadequate urine output esults in accumulation of mannitol expansion of extracellular fluid

be closely monitored during mannitol infusion.

Mannitol solution must be used with caution in patients with significant cardiopulmonary or Irrigating solutions used in transurethral prostatectomy have been shown to enter the systemic circulation in relatively large volumes.

exert a systemic effect and may significantly alter cardiopulmonary and renal dynamics.

PRECAUTIONS: General Crystals, if present in mannitol injection, 25%, may be dissolved by placing the vial in a hot water bath maintained at 60° to 80°C with occasional shaking. The resulting solution should be allowed to cool to body temperature before

injection.

An administration set with a filter should be used for intravenous infusions of solutions containing 20% or more of mannitol.

NOTE: Use of any other method to heat the vial may result in its explosion.

The cardiovascular status should be carefully evaluated before mannitol is administered by rapid intravenous injection or before and during transurethral resection since expansion of extracellular fluid may lead to fulminating congestive heart failure.

By sustaining diuresis, mannitol may obscure and intensify inadequate hydration or hypovolemia.

obscure and intensify inadequate nyaration or hypovolemia.
Unless it is essential, electrolyte-free mannitol solutions should not be combined with blood. When it is essential to give the combination, at least 20 mEq of sodium chloride should be added to each liter of mannitol solution to avoid pseudoagglutination. The contents of opened containers should be used promptly and unused contents should

De discarded.

A white flocculant mannitol precipitate may result from contact with PVC surfaces which act as nuclei for rapid rate crystallization of small crystals. This condition has also been reported to occur when mannitol has come in contact with other plastic and rough glass surfaces. Attempting to resolubilize the white flocculant precipitate with the aid of heat is not useful because crystallization may recur in a short period of time.

used promptly and unused contents should be discarded.

period of time. Carcinogenesis, Mutagenesis, Impairment of Fertility for 10% mannitol, given for 94 weeks in the diet of Wistar rats, a low incidence of benign thymomas occurred in females which was apparently treatment related. A subsequent life-time study at similar dose levels in Spraque-Dawley, Fischer and Wistar rate according to the control of the cont

Wistar rats revealed no carcinogenic effect in the thymus. Mannitol had no mutagenic activity in a series of *in vitro* and *in vivo* test systems.

Adequate studies measuring the effects of

Pregnancy
Pregnancy Category B-Teratogenic studies
in the mouse, rat and rabbit at oral doses up
to 1600 mg/kg did not reveal harm to the fetus
or adverse effects on reproduction due to
mannitol. There are, however, no adequate and
well-controlled studies in pregnant women.
Because animal reproduction studies are not
always predictive of human response, this drug
should be used during pregnancy only if clearly
needed.

mannitol on fertility have not been done

needed Nursing Mothers It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when mannitol is given to a nursing mother

Pediatric Use

acidosis, dehydration.

Dosage requirements in children below the age of 12 years have not been established. ADVERSE REACTIONS:

To report SUSPECTED ADVERSE REAC-TIONS, contact Fresenius Kabi USA, LLC a 1-800-551-7176 or FDA at 1-800-FDA-1088

or www.fda.gov/medwatch.
Reactions are infrequent and may include: Metabolic: fluid and electrolyte imbalance,

FRESENIUS KABI Lake Zurich, IL 60047 www.fresenius-kabi.com/us

45779D Revised: November 2022

injection.

of mannitol, expansion of extracellular fluid volume and could result in water intoxication or congestive heart failure. Renal function must renal dysfunction